Lösungstabelle für

Inhomogene Gleichungen vom Typ $y'+a\cdot y=g(x)$

Linear und mit konstanten Koeffizienten)

Ausführliche Beschreibung und Beispiele im Text 53002

Die allgemeine Lösung der DGL ist die Summe aus der allgemeinen homogenen DGL und einer partikulären Lösung der inhomogenen DGL: $y(x) = y_O(x) + y_P(x)$

1. Schritt: Allgemeine Lösung der <u>homogenen</u> DGL y'+ay=0: $y_0(x)=c\cdot e^{-ax}$

2. Schritt: Partikuläre Lösung der inhomogenen DGL $y_P(x)$ mit Lösungsansatz entsprechend der Störfunktion g:

Fall	Die Störfunktion g(x) ist		Lösungsansatz	Beispiel
(1)	ein Polynom von Grad 1:		$y_{P}(x) = Cx + D$	B16
	ein Polynom von Grad 2:		$y_P(x) = Dx^2 + Ex + F$	B17
(2)	e^{ax} : $y' + \boxed{b} \cdot y = e^{\boxed{a} \times }$	lst a + b ≠ 0 :	$y_P = C \cdot e^{ax}$	B19
		lst $a + b = 0$:	$y_{P}(x) = k \cdot xe^{a \cdot x}$	B20
(3)	$a \cdot sin(\omega x)$, $b \cdot cos(\omega x)$		$y_p(x) = A \cdot sin(\omega x) + B \cdot cos(\omega x)$	B27
(4)	$y' + \boxed{b} \cdot y = e^{\boxed{a}x} + cx$	$Ist a + b \neq 0$	$y_{P}(x) = xe^{ax} + (Bx + C)$	B25
	$y' + b \cdot y = xe^a x$	$lst a + b \neq 0$	$y_{P}(x) = xe^{ax} \cdot (Bx + C)$	B26
	$y'+y=2x\cdot sin(x)$	$y_{P}(x) = x \cdot (a \cdot \sin(x) + b \cdot \cos(x)) + (c \cdot \sin(x) + d \cdot \cos(x))$		x)) B30
	$y'-4y=e^{2x}+10\sin(2x)$	$y_P(x) = k \cdot e^{2x} + a \cdot sin(2x) + b \cdot cos(2x)$		B31

Für andere Arten von DGL 1. Ordnung gibt es diese oft anwendbaren Lösungsmethoden:

Trennung der Variablen:	Man bringt die DGL in die Form $r(y) \cdot dy = s(x) \cdot dx$		
	und integriert dann auf beiden Seiten.	Text 53001	
	Dabei hilft oft eine Substitution.		
Variation der Konstanten	Man löst die homogene Gleichung zu $y_o = C \cdot r(x)$		
	und ersetzt dann die Konstante durch eine Funktion $C(x)$.		

Friedrich Buckel www.mathe-cd.de

Dann setzt man in die DGL ein ... Text 53002

B7

Lösungstabelle für

Inhomogene Gleichungen vom Typ $y''+a\cdot y'+b\cdot y=g(x)$

Linear und mit konstanten Koeffizienten)

Ausführliche Beschreibung und Beispiele im Text 53005

1. Schritt: Lösung der homogenen Gleichung über die charakteristische Gleichung $\lambda^2 + a\lambda + b = 0$

1. Fall: Zwei reelle Lösungen $\lambda_1 \neq \lambda_2$ $y(x) = k_1 e^{\lambda_1 x} + k_2 e^{\lambda_2 x}$

2. Fall: Genau eine Lösung λ : $y(x) = (k_1 + k_2 x) \cdot e^{\lambda x}$

3. Fall: Zwei komplexe Lösungen $\lambda_{1,2} = \alpha \pm \omega i$: $y(x) = e^{\alpha x} \cdot (C_1 \cos(\omega x) + C_2 \sin(\omega x))$

2. Schritt: Partielle Lösung der inhomogenen Gleichung je nach Störfunktion bestimmen.

	Die Störfunktion g(x) ist		Lösungsansatz	Beispiel	
SF0	Polynom von Grad 0	lst b ≠ 0 :	$y_{P}(x) = C$	B11 bis 13	
		Ist $b = 0$:	$y_{P}(x) = Dx + E$	B14	
SF1	Polynom von Grad 1:	Ist $b \neq 0$:	$y_{P}(x) = Cx + D$	B15 bis 17	
		Ist b = 0:	$y_{P}(x) = Dx^{2} + Ex + F$	B18	
		Ist a = b = 0	zweimal integrieren	B19	
SF2	Polynom von Grad 2:	lst $b \neq 0$:	$y_{P}(x) = Dx^{2} + Ex + F$	B20 bis 23	
		Ist $b = 0$:	$y_{P}(x) = Cx^{3} + Dx^{2} + Ex + F$	B24	
SF-e	eine e-Funktion	Ist $m \neq \lambda_{1,2}$	$y_{_{P}}=C\cdot e^{mx}$	B25 bis 28	
		$Ist \frac{m = \lambda_1 \text{ oder } \lambda_2}{m}$	$y_{p}\left(x\right)=Cx\cdot e^{mx}$	B29 bis 30	
		$Ist \ m = \lambda_1 = \lambda_2$	$y_{p}\left(x\right)=Cx^{2}\cdot e^{mx}$	B31	
$\boxed{SF-sin}\qquad a\cdotsin\big(\omegax\big)\ oder\ \boxed{SF-cos} b\cdotcos\big(\omegax\big)$					
		Ist $i\omega \neq \lambda_{1,2}$ $y_p(x)$	$(x) = A \cdot \sin(\omega x) + B \cdot \cos(\omega x)$	B32 bis 34	
		$lst \ i\omega = \lambda_1 \ oder \ \lambda_2$	$y_p(x) = x \cdot [A \cdot sin(\omega x) + B \cdot cos$	(ω x)] B35	
SF – Sum		Ist y _P = Summe aus 2 Funktionen: Trennen!		B36 bis 40	
SF-Prd		Ist y _P = Produkt aus	2 Funktionen: Trennen	B41 bis 43	

3. Schritt: Die allgemeine Lösung der DGL ist dann die Summe aus der Lösung der homogenen DGL und der partiellen Lösung der inhomogenen DGL.

Friedrich Buckel www.mathe-cd.de